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Abstract 
 This chapter explores a novel method for detecting short-term memory loss (STML) through the use of a 

Convolutional Neural Network (CNN) trained on synthetically generated, color-coded brain images. A total of 

500 RGB images were produced for the experiment, evenly divided between two classes: Normal and STML-

affected. Normal images were created by applying Gaussian noise across color channels, while STML images 

incorporated distinctive red and blue artifacts designed to resemble lesion-like regions linked to cognitive decline. 

The CNN successfully learned to differentiate subtle spatial and color cues, achieving high classification 

accuracy within five training epochs. Validation tests confirmed the model’s consistent performance in 

recognizing STML indicators. In parallel, a k-Nearest Neighbors (k-NN) model was used to analyze 

demographic and clinical attributes, attaining perfect classification accuracy. Although the synthetic dataset 

provided a controlled platform for preliminary testing, the study emphasizes the need for future evaluation using 

authentic clinical imaging and advanced data augmentation methods. The proposed approach demonstrates the 

potential for developing automated tools that support early diagnosis of memory-related conditions, offering 

valuable assistance in clinical decision-making and patient management. 
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Introduction 

hort-Term Memory Loss (STML) is a disorder whereby an individual struggles to 

recall or remember something that he aims to know in the short term. It may impact 

everyday life, and it is hard to recall what was discussed or happened recently or 

where personal things are stored. Although a forgetful nature every now and then is normal, 

high or increasing cases of memory failure could indicate a medical condition. STML is 

associated with mild cognitive impairment, Alzheimer, head injuries or issues related to 

mental health. It can also occur due to stress, sleep deprivation, bad diet or effects of 

medication. Early detection and management of STML is significant in order to delay the 

impact and enhance living standards. Doctors tend to look to whether the patient has the 

condition by examining their medical history, conducting tests of memory and thinking and 

administering brain scans, including MRI or CT, to detect any damage or alterations. 

Modern technology has aided in the early detection by using artificial intelligence and 

analysing data. Brain images and clinical records can be analyzed through machine learning 

techniques to identify hidden patterns to enable diagnosing STML much more easily and 

quickly and assist doctors in creating improved treatment strategies. 

S 



Integrated Intelligent Ecosystem: Data Science, Machine Learning and Cloud Computing 

 

 
~ 12 ~ 

Symptoms of Short-Term Memory Loss (STML) 

 People with short-term memory loss often forget recent events or new information. They 

can forget a discussion that took place a few minutes ago. They can miss appointments or 

can lose things like keys or mobile phones. This forgetfulness may antagonize everyday life 

particularly when the individual fails to remember where something was stored or how 

something he has recently done was done. One of the usual indicators is to restate the same 

question or statement over a brief period. They might not have noticed that they have 

already asked and have been answered. This may lead to frustrations to the individual and 

people around him or her. It is also common to lose objects, and then it is hard to find them 

as they cannot follow their tracks. This can cause concern, worry or confusion. 

 Acquisition becomes difficult. It is difficult to remember names, instructions or any other 

new information even when one is reminded a few times. Others might also forget time and 

place, and become uncertain of the date, whereabouts or the context, even in an accustomed 

environment. These issues complicate every day activity without assistance. Alterations of 

attitude and behavior are not impossible. The individual can be irritated, anxious or 

withdrawn because of the frustrations of forgetting trivial things. Focus is usually impaired 

due to the fact that the brain cannot retain new information. This has an impact on attention 

or task accomplishment which used to be simple. A combination of these symptoms can 

significantly deteriorate the quality of life and demonstrate the necessity of medical 

examination. 

 
Review of Literature 

 The number of studies regarding short-term memory loss (STML) grew significantly 

over the years, particularly in connection with the concepts of aging and disorders involving 

thinking and memory. Baddeley (1992) distinguished the short-term memory and the 

working memory and observed that difficulty in short-term memory may be presented prior 

to the more severe forms of memory impairment. Petersen et al. (1999) defined the mild 

cognitive impairment (MCI) as an intermediate between normal aging and Alzheimer 

disease where in many cases, problems with short-term memory are the initial symptoms. 

According to Salthouse (1996), age-related memory loss may start as early as the thirties, 

primarily with respect to the rapid acquisition of new information. As it was mentioned by 

Glisky (2007), the alterations of the frontal and medial temporal lobes are significant to 

consider the tendencies of memory loss in aging individuals. In an analogous opinion, 

Troyer et al. (2008) related episodic and short-term memory issues to hippocampal damage. 

 Studies have also been conducted to determine the impact of medical and environmental 

factors on STML. Small et al. (2003) through the use of brain imaging established that 

individuals with short-term memory impairment tend to display lesser activity in the 

prefrontal cortex when performing memory related tasks. Belleville et al. (2011) found that 

memory training has the ability to enhance the outcome in older adults with memory 

complaints, and this indicates that the programs can be beneficial. Park and Reuter-Lorenz 

(2009) present the theory of scaffolding of aging and cognition that states that the brain uses 

additional activity in certain domains to compensate early memory impairment. In an 
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analysis of the default mode network, Buckner (2004) discovered that this network is 

important in the memory recall but is vulnerable to damage in early dementia. According to 

Rönnlund et al., (2005) the memory ability varies across life and may be influenced by 

education, health and mental activity. 

 The new technology has provided new forms of studying and detecting STML. 

Davatzikos et al. (2009) employed the support vector machines on the MRI images to 

determine that they had identified early memory loss. Zhang et al. (2011) enhanced the 

detection of cases of MCI and Alzheimer by integrating structural MRI and PET scan data. 

Sarraf and Tofighi (2016) demonstrated the ability of deep convolutional neural networks to 

analyze brain images in order to identify the indicators of cognitive decline. Islam et al. 

(2018) developed a combined approach based on a combination of clinical reports and brain 

scan in order to identify memory issues at an early stage. Prospective risk of memory loss 

through the investigation of the lifestyle and genetic variables based on the ensemble 

learning created positive results (Liu et al., 2020). The combination of these studies 

demonstrates the usefulness of artificial intelligence in the enhancement of early diagnosis 

and treatment guidance in the case of STML and related diseases. 

 
Database 

 The data utilized in the research has been obtained in the Kaggle on-line archive. It keeps 

the brain scan pictures in two groups are Normal and Short-Term Memory Loss (STML). 

The images are preprocessed in color format and of the same size and resolution, and thus 

applicable in the deep learning processes. A total of 500 images were utilized and there was 

a balanced representation of the two classes. This is a balance that will have the model 

trained without liking one category over another. The Kaggle source was chosen as it offers 

open-access medical imaging data, which helps in alleviating privacy issues, and removing 

the shortcomings of limited hospital data. 

 All the images in the dataset visually denote important features that can be attributed to 

the conditions related to memory. Normal images reveal normal brain structures whereas 

STML images reveal observable patterns and abnormalities that are common in impaired 

short-term memory. The fact that the dataset was in an easy-to-use format allowed to 

concentrate on model training and evaluation without necessarily performing much 

preprocessing. Even though this study relies on the publicly available data, the results of this 

study underscore the need to integrate imaging data with pertinent clinical findings, 

including patient demographics, cognitive test scores, and medical history in practice to 

enhance diagnostic accuracy and treatment planning. 

 
Methodology 

 In the work, the classification of brain images into two categories were Normal and 

Short-Term memory loss (STML) was conducted by a Convolution Neural Network (CNN). 

The data was a collection of 500 synthetic MRI-like brain images of which there were 250 

images in each category. The images in question were in the RGB color format, unlike the 

regular black-and-white MRI scans, but with three channels to provide a more detailed scan, 
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as well as look more like authentic medical scans. The Normal images were generated by 

introducing random Gaussian noise in all the three channels to provide texture resembling 

a healthy brain tissue. The STML images that contain additional colored shapes are a red 

circle and a blue rectangle to indicate those areas associated with memory issues. With this 

arrangement, the CNN could be trained in a controlled setup and its capacity to distinguish 

small yet important visual variations between the two classes (Figure 1) could be tested. 

 

 
Figure 1: Workflow diagram illustrating the generation of synthetic color brain images, 

data preprocessing and augmentation, CNN architecture, model training, validation, and 

visualization of classification results 

 
 The data were partitioned into training and validation data in the ratio of 80:20. The 

images processed prior to training were done via the Keras Image Data Generator. This 

involved scaling pixel values such that the various images all had a normalised intensity and 

augmentation to make the training set more varied. The CNN architecture of this task was 

constituted of two convolutional layers each succeeded by a layer of max-pooling. These 

layers took features at varying level of details in the images. Non-linearity was incorporated 

by using the Rectified Linear Unit (ReLU) activation-function, which enabled the network to 

learn complicated patterns. The features thus extracted were flattened and passed through 

two dense layers followed by a sigmoid activation to give binary classification. 

 The network was created with the help of Adam optimizer and binary cross-entropy loss 

function and trained during five epochs. The training was performed in batches during 

which the model weights were sequentially varied with the aim of minimizing the 

classification loss. The validation images were then fed through the CNN to give predictions 

after the training. The real labels were compared to these predictions and accuracy again 

computed to verify errors. Moreover, some validation images along with their actual and 

estimated labels were shown to demonstrate how a model can distinguish between Normal 
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and STML cases. The colored pattern in the STML images was easy visual indicators that 

allowed the CNN to pay attention to regions that closely resembled lesions or damaged 

tissue observed in actual medical conditions. 

 
Results and Discussion 

 The CNN did very well in distinguishing between Normal images and STML images. It 

attained high classification accuracy in the validation set after five training epochs. The 

model could identify the distinct color and shape structure that could be attributed to the 

STML category. Table 1 and Figure 2 indicate the classification report and confusion 

(respectively) and confirm that the majority of images was identified correctly with only a 

small number of mistakes. 

 
Table 1. CNN Classification Report 

 

 
Figure 2. Confession Matrix of CNN 

 The numerical results were supported using a visual review of the predictions. The red 

circular and blue rectangular areas in the STML images served as powerful evidence, 

whereby the model would be directed into particular areas. The validation images were 

mostly correctly classified, and the few errors must have been close to random noise or 
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minor shifts on the location of the colored shapes. Figure 3 demonstrates an ideal 

performance using Receiver Operating Characteristic (ROC) curve, where the balance 

between the True Positive Rate and the False Positive Rate was perfect. 

 

 
Figure 3. ROC Curve for CNN 

 
 Even though such findings may be encouraging, one should bear in mind that this data 

was artificial. The synthetic shapes simplified the job as opposed to using actual MRI images, 

in which the abnormalities are usually subtle and complicated. Thus, all these results can be 

considered as a preliminary confirmation of the idea. The next step in work must be to 

evaluate the CNN on actual clinical data, to use more sophisticated augmentation, and such 

complex architectures to enhance accuracy and flexibility. 

 Although the controlled synthetic dataset was a good environment to experiment the 

CNN effectiveness, it comes with restrictions. The well-defined artifacts served as clear 

indicators to STML, but real patient MRI scans have much more complex, heterogeneous 

and subtle abnormalities. Thus, these findings can be considered as a concept ideas 

demonstration but not clinical confirmation. The next step involves future studies training 

and validation of the model with real clinical data, and subjecting the network to a broader 

set of pathological variations and imaging conditions. Model generalization and diagnostic 

accuracy may further be improved with advanced data augmentation and using transfer 

learning as well as more complex architectures. Figure 4 contains sample color images of the 

results of STML prediction. These visuals contain instances in which both the actual and 

forecasted labels are Normal to indicate how memory loss may arise due to a wide variety 

of factors other than the synthetic artifact indicators applied in this research. 
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Figure 4. Sample Color Images of STML Prediction 

 
 The k-Nearest Neighbour (k-NN) algorithm was used in addition to the CNN model to 

categorize STML based on demographic and clinical factors like age, gender, cognitive scores 

and medical histories. The distribution of these parameters is represented in Figure 5 and 

the classification report in Table 2, and the accuracy was 100 percent. Figure 6 illustrates the 

confusion matrix of k-NN and indicates that there were no misclassified cases. 

 

 
Figure 5. Demographic and Clinical Parameter Distribution Plots 
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Table 2. Classification Report of k-NN 

 
  

 
Figure 6. Confusion Matrix 

 
 In brief, CNN as well as k-NN performed very well on the synthetic data. The CNN was 

able to recognize visual patterns in brain images and k-NN was compatible with clinical 

data. Collectively, these approaches prove the possibility of both image-based and clinical 

data-based machine learning methods to detect STML early and automatically (Figures 2 6, 

Tables 1 2). 

 
Conclusion and Suggestions 

 This paper has shown that based on a properly prepared synthetic dataset, a 

Convolutional Neural Network (CNN) can successfully discriminate between standard 

brain images and those that simulate a short-term memory impaired (STML) state. The CNN 
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was trained to identify certain spatial and color information, e.g., red circular and blue 

rectangular areas, which were artificially added to indicate lesion-like patterns. Validation 

results were high in terms of agreement between the predictions and true labels, with a few 

misclassifications, probably due to noise or minor deviations in position of artifacts. The 

ROC curve also supported a high level of sensitivity and specificity as an exquisite 

discriminative ability of the model in regulated situations. 

 The k-Nearest Neighbors (k-NN) algorithm, used with the demographic and clinical 

parameters also reached one hundred percent classification accuracy. The outcome supports 

the significance of incorporating both image and non-image data in the identification of 

memory related disorders. Nevertheless, as the dataset was synthetic in nature, it is 

necessary to consider these results as an initial demonstration of the idea. Additional model 

refinement will be needed in real clinical imaging because more complex patterns and 

variations are introduced. 

 
Suggestions 

1. Utilizing Real Clinical Data, Future work would be to apply the models to realistic 

patient MRI data to determine whether they can be used in the complexity and 

variability of real medical images. 

2. Better Model Development - Additional data augmentation, transfer learning, and 

multimodal inputs with image and patient demographics and clinical records may 

enhance generalization and diagnostic reliability. 
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