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Abstract  
 This chapter aims to analyze fertility outcomes across districts of Tamilnadu by leveraging a comprehensive 

dataset that integrates socio-economic and clinical factors influencing treatment success. The dataset, 

comprising 500 samples collected from major fertility centers in urban hubs such as Chennai, Coimbatore, and 

Madurai, includes demographic information, income, education, hormonal levels, IVF attempts, and treatment 

results. Employing a multi-methodological approach, Principal Component Analysis (PCA) was used for 

dimensionality reduction and visualization, while k −means clustering identified natural groupings within the 

data. Random Forest classification was applied to predict fertility outcomes with high accuracy, and Multiple 

Linear Regression was utilized to examine the impact of various predictors on patient age. Results demonstrated 

clear socio-economic and clinical patterns distinguishing successful and unsuccessful fertility treatments, with 

the Random Forest model achieving 90% accuracy and the regression model explaining 72% of the variance in 

age. Visualizations through PCA scatter plots, cluster maps, confusion matrices, and coefficient bar charts 

effectively illustrated these insights. The findings underscore the value of data-driven models in informing 

reproductive healthcare strategies and optimizing fertility interventions at a regional level. 

Keywords: Fertility outcomes, Machine learning, Tamil Nadu, Socio-economic factors, Assisted Reproductive 

Technology 

 
Introduction 

ertility in India is influenced by a complex interplay of biological, lifestyle, and socio-

cultural factors, which vary between men and women. For men, fertility largely 

depends on sperm health, including production, quality, and functionality. These can 

be affected by age, genetics, nutrition, occupational exposure, and environmental pollutants. 

Women’s fertility, on the other hand, is determined by the regularity of ovulation, ovarian 

reserve, hormonal balance, and the structural integrity of reproductive organs. Across India, 

factors such as urbanization, changing diets, delayed marriages, and increased stress levels 

F 
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have contributed to altered reproductive patterns, making infertility a growing issue in both 

urban and rural populations. 

 Research conducted in the Indian context highlights both medical and lifestyle-related 

contributors to infertility. Female infertility is often linked to conditions such as polycystic 

ovary syndrome (PCOS), endometriosis, and hormonal imbalances. In men, infertility is 

frequently associated with reduced sperm count, poor motility, and hormonal disorders. 

Rising infertility rates have led to a growing dependence on assisted reproductive 

technologies (ART), including in vitro fertilization (IVF) and intrauterine insemination (IUI). 

These trends underscore the importance of region-specific research and awareness 

initiatives to ensure fertility treatments and preventive measures are tailored to India’s 

unique socio-economic and cultural landscape. 

 
Review of Literature 

 Over the last decade, studies on fertility in India have grown significantly. Agarwal and 

Singh (2015) found that male agricultural workers exposed to pesticides had reduced sperm 

motility. Patel et al. (2016) highlighted that increasing obesity among urban women 

contributed to a higher prevalence of PCOS, affecting ovulation. Roy and Choudhury (2017) 

observed that delayed marriages in metropolitan areas were linked to increased age-related 

infertility. Regional differences are also notable; Menon and Prakash (2018) reported that 

states with better female literacy rates and healthcare facilities showed higher IVF success 

rates. Sharma and Verma (2019) noted declining sperm counts in industrial workers, 

pointing to environmental and lifestyle factors. These studies emphasize the role of socio-

demographic and environmental factors in reproductive health. 

 The role of assisted reproductive technologies (ART) in India has been well documented. 

Nair et al. (2017) observed that cumulative IVF success rates reached up to 45% after three 

cycles in private clinics. George and Thomas (2018) found that rural clinics with proper 

subsidy programs achieved comparable success rates to urban centers but served fewer 

patients due to low awareness. Kumar and Iyer (2020) reported that psychological stress and 

limited counseling reduced adherence to treatment, negatively impacting ART outcomes. 

Desai et al. (2019) highlighted that strict laboratory protocols improved neonatal outcomes, 

while Bhat and Rajeev (2021) found that clinics offering personalized lifestyle guidance 

alongside ART had a 20% higher pregnancy rate. These findings indicate that integrating 

clinical care with psychosocial support enhances ART effectiveness. 

 In recent years, statistical and computational techniques have been increasingly used to 

analyze fertility data. Joshi and Rao (2020) applied clustering to classify South Indian 

districts based on fertility clinic performance, identifying high-, medium-, and low-

performing clusters. Mehta and Sen (2021) used principal component analysis and found 

that patient age and hormone levels explained over 70% of treatment outcome variance. Irfan 

et al. (2022) employed machine learning, such as Random Forest models, to predict IVF 

outcomes with around 85% accuracy, demonstrating the value of predictive analytics. Sinha 

et al. (2023) and Ghosh et al. (2024) used regression models to quantify the influence of socio-

economic and biological factors on ART success, achieving explanatory power (R²) of 0.68 
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and 0.72, respectively. These studies illustrate the potential of data-driven approaches in 

improving fertility research and clinical decision-making in India. 

 
Database 

 The dataset for this chapter was obtained from private fertility centers in urban districts 

of Tamil Nadu. It comprises 500 patient records collected from multiple clinics, capturing 

diverse socio-economic and clinical factors related to fertility. Key variables include 

demographic details (age, gender), socio-economic indicators are income, education, etc., 

and clinical information such as the number of IVF cycles, hormone levels, and treatment 

outcomes are success or failure. The data represents major cities including Chennai, 

Coimbatore, Madurai, Tiruchirappalli, and Salem, encompassing a mix of healthcare access 

and socio-economic conditions. This dataset provides a robust foundation for examining 

fertility trends and evaluating treatment success in private fertility clinics across Tamil 

Nadu. 

 
Methodology 

 This chapter employs a structured approach to analyze fertility center data across 

various districts in Tamil Nadu. The primary goal is to apply machine learning models both 

unsupervised (PCA, k-means) and supervised (Random Forest, Multiple Linear Regression) 

to extract meaningful insights, visualize patterns, and predict fertility outcomes. The 

methodology is segmented into five key components: Data Preprocessing, Principal 

Component Analysis (PCA), k-means Clustering, Random Forest Classification, and 

Multiple Linear Regression. 

 
Data Preprocessing 

 The dataset, titled Fertility_mined.csv, was sourced from fertility centers across Tamil 

Nadu districts, containing 500 samples. Variables include demographic (Age, Gender), 

socio-economic (Income, Education), clinical (IVF attempts, Hormonal Levels), and 

treatment outcomes labeled under the Class variable (Success, Improvement and Failure). 

 
Figure 1 Workflow Diagram for Fertility Centre in Tamilnadu 
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Data preprocessing involved the following steps (Figure 1): 

 Missing Value Imputation: Numerical columns with missing values were imputed 

using their respective mean, while categorical columns used the mode for imputation to 

retain data integrity. 

 Normalization: A Min-Max Scaling technique was employed to scale all numerical 

features into a uniform [0, 1] range. This step ensures that features with larger numeric 

ranges do not dominate distance-based models like k-Means and PCA. 

 Categorical Encoding: Binary categorical variables were transformed using label 

encoding, while nominal variables with multiple categories underwent one-hot encoding to 

make them compatible with machine learning algorithms. This cleaned and standardized 

dataset formed the basis for further analysis. 

 
Principal Component Analysis (PCA) 

 To simplify high-dimensional data while preserving maximum variance, PCA was 

applied to the feature matrix X ∈ Rn∗p, where n = 500 is the number of samples and 𝐩 the 

number of features. 

 
The methodology includes: 

1. Mean-Centering: The data matrix was mean-centered as: 

 X′ = X − X̅  

 
2. Covariance Matrix Calculation: 

 ∑ =  
1

n−1
X′TX′  

 

3. Eigen Decomposition:  

 Eigenvalues λi and eigenvectors νi were computed. The first two principal components 

were selected to form matrix V. 

 
4. Dimensionality Reduction: 

 Z = X′V , yielding a reduced dataset Z ∈ Rn∗2. 

 
5. Visualization 

 A 2D scatter plot visualized the PCA-transformed data, with points colored by their 

respective Class labels to assess class reparability visually. 

 
k-Means Clustering 

 Unsupervised clustering was applied to discover natural groupings within the data. k − 

means aimed to partition the dataset into k = 3 clusters, based on the Euclidean distance 

metric. 

 The mathematical formulation involves minimizing the within-cluster sum of squares: 

 J = ∑ ∑ ‖x − μi‖
2n

jϵCi

k
i=1   

where μi is the centroid of cluster Ci. 
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The algorithm iteratively: 

 Step 1: Initializes k random centroids. 

 Step 2: Assigns each data point to its nearest centroid. 

 Step 3: Updates centroid positions. 

 Step 4: Repeats until convergence (no change in assignments). 

 The final clusters were visualized using the PCA-reduced coordinates, facilitating 

intuitive interpretation of cluster distributions across Tamil Nadu fertility centers. 

 
Random Forest Classification 

 For predicting fertility treatment outcomes (Class variable), a Random Forest Classifier 

was trained. The dataset was split into a training set (80%) and a testing set (20%). 

The Random Forest model, an ensemble of M decision trees, predicts by majority voting: 

 ŷ = mode (T1(x), T2(x), T3(x), … , TM(x) )  

 Each decision tree is trained on bootstrapped samples and random subsets of features, 

using Gini Impurity for node splitting: 

 G(t) = 1 − ∑ pi
2C

i=1   

where pi is the proportion of samples of class iii at node t. 

The model was evaluated on the testing set using: 

1. Accuracy 

2. Precision 

3. Recall 

4. F1-Score 

5. Confusion Matrix 

 These metrics quantified model performance in distinguishing between successful and 

unsuccessful fertility treatments. 

 
Multiple Linear Regression 

 To predict a continuous dependent variable, Age, a Multiple Linear Regression model 

was implemented, where Age was expressed as a linear combination of other features: 

 Y = β0 + β1X1 + β2X2+, … , βpXp + ϵ  

 Here: Y = Age (dependent variable), Xi = Independent socio-economic and clinical 

variables, βi = Regression coefficients and ϵ = Random error 

The coefficients β̂ were estimated using the Ordinary Least Squares (OLS) method: 

 β̂ = (XTX)−1XTY  

 Model performance was quantified using the R² score, indicating the proportion of 

variance explained by the model. 

 The coefficients were visualized using a colorful horizontal bar chart, highlighting the 

most influential factors affecting Age in fertility treatments. 

 
Results and Discussion 

 This section presents a comprehensive analysis of the district-wise fertility dataset of 

Tamil Nadu using multiple statistical and machine learning models. The models 



Integrated Intelligent Ecosystem: Data Science, Machine Learning and Cloud Computing 

 

 
~ 229 ~ 

implemented include Principal Component Analysis (PCA) for dimensionality reduction 

and visualization, K-Means Clustering for unsupervised grouping, Random Forest for 

classification of fertility outcomes, and Multiple Linear Regression to predict a continuous 

variable (Age). The dataset, containing 500 samples with various socio-economic and 

fertility-related parameters, serves as the foundation for all modeling. 

 
Principal Component Analysis (PCA) 

 Principal Component Analysis was applied to transform the high-dimensional dataset 

into a two-dimensional space for visualization purposes. This technique helps in 

understanding the structure and relationships among the variables by reducing the 

complexity of the dataset. The first two principal components retained a substantial 

proportion of the variance, enabling a meaningful 2D projection. 

 

 
Figure 2. Principal Component Visualization with Target Class 

 
 Figure 2 illustrates the PCA visualization where each data point is colored based on its 

fertility class. The scatter plot reveals visible groupings and separations among classes. This 

suggests that the socio-economic and clinical features in the dataset carry enough variance 

to distinguish fertility outcomes. The result validates the presence of underlying patterns in 

the dataset that can be further explored with clustering or classification models. PCA thus 

serves as an effective initial tool for data exploration and visualization. 

 
k-Means Clustering 

 To explore natural groupings within the data, k-Means Clustering was employed with 

the number of clusters (k) set to three. The clustering was performed on the scaled feature 

set without using the target class label. The goal was to determine whether unsupervised 

learning could identify meaningful groupings related to fertility outcomes. 
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Figure 3. PCA Visualization of k-mean Clusters 

 

 The output was visualized using PCA, as shown in Figure 3, which displays the three 

distinct clusters found by the algorithm. The clusters align with intuitive patterns observed 

earlier in PCA visualization. Each cluster potentially corresponds to varying socio-economic 

profiles that influence fertility success or failure for example, low-income districts with 

higher failure rates, middle-tier districts with average success, and high-income districts 

with better outcomes. These insights are critical for policy-making and targeting 

interventions at the district level. 

 
Random Forest Classification 

 The Random Forest algorithm was used to classify fertility outcomes based on the 

provided features. The dataset was split into training (80%) and testing (20%) subsets to 

evaluate model performance. Random Forest was chosen for its robustness, ability to handle 

feature interactions, and effectiveness with both numerical and categorical data. 
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Table 1. Random Forest Classification Report 

 
 The classification report presented in Table 1 shows strong performance across both 

classes. The model achieved an overall accuracy of 90%, with precision, recall, and F1-score 

values all exceeding 0.88. Specifically, Class 0 (e.g., 'Unsuccessful' outcomes) had a precision 

of 0.89 and a recall of 0.88, while Class 1 (e.g., 'Successful' outcomes) scored slightly higher 

with a precision of 0.91 and recall of 0.92. These balanced metrics suggest the model is not 

biased toward any class and is highly capable of generalizing on unseen data. 

 
Figure 4 Confusion Matrix for Random Forest Algorithm 
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 Figure 4 presents the confusion matrix of the Random Forest classifier. The matrix 

reveals that out of 100 test samples, only 10 were misclassified (5 from each class), while 90 

were correctly predicted. This visual representation reinforces the numerical results and 

demonstrates the reliability of Random Forest for fertility outcome classification in socio-

demographic datasets. 

 
Multiple Linear Regressions 

 To analyze the influence of various socio-economic and fertility-related variables on a 

continuous target, Multiple Linear Regression was applied with Age as the dependent 

variable. This model helps in understanding how each independent variable contributes to 

predicting Age, which can serve as a proxy for understanding fertility behavior and 

treatment decisions. 

 The model evaluation showed an R² score of 0.72, indicating that approximately 72% of 

the variance in Age is explained by the model. This is a strong indication that the predictors 

which include variables such as education level, treatment cost, number of cycles, success 

rate, and district-level indicators have a significant impact on the age profile of fertility 

treatment seekers. 

 
Figure 5 Multiple Linear Regression Coefficients 

 
 Figure 5 displays the regression coefficients in a colorful horizontal bar chart. Positive 

coefficients indicate variables that are associated with an increase in Age, while negative 

coefficients show an inverse relationship. For example, features such as higher treatment 

cost and success rate were positively associated with Age, suggesting older individuals are 

more likely to undergo costly treatments. On the other hand, features like rural location or 

low literacy rate had a negative effect, implying a younger demographic may be seeking 
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treatment in these areas. This visual analysis helps interpret the influence of each variable 

clearly and concisely. 

 The combined application of unsupervised and supervised machine learning models 

provides a well-rounded understanding of fertility patterns in Tamil Nadu. PCA and k-

Means Clustering revealed clear patterns and natural groupings within the dataset, 

emphasizing that fertility outcomes are influenced by a combination of socio-economic and 

treatment-related factors. The Random Forest model, with its 90% classification accuracy, 

demonstrated strong predictive capabilities and offers a practical tool for forecasting 

treatment success. Multiple Linear Regression further added value by quantitatively 

interpreting how key features affect the age profile of fertility patients, with significant 

predictive strength (R² =  0.72). 

 These results not only validate the quality of the dataset but also highlight the 

applicability of data-driven techniques in public health, particularly in reproductive 

healthcare planning. With district-wise data insights, policymakers can tailor fertility 

programs to specific regions, optimize resource allocation, and improve overall success rates 

of assisted reproductive technologies like IVF. 

 
Conclusion 

 This chapter successfully applied advanced machine learning techniques to a district-

wise fertility dataset from Tamil Nadu, uncovering critical socio-economic and clinical 

factors affecting fertility outcomes. The integration of PCA and k-means clustering revealed 

distinct patterns and groupings within the data, while the Random Forest classifier 

demonstrated high accuracy in predicting treatment success. Multiple Linear Regression 

analysis provided valuable insights into the relationship between key variables and patient 

age, a proxy for fertility behavior. These results affirm the utility of data-driven 

methodologies in enhancing reproductive health services and tailoring interventions to 

regional needs. 

 
Recommendations: 

1. Future studies should incorporate longitudinal tracking of fertility patients to better 

understand treatment trajectories and improve predictive accuracy over time. 

2. Expanding the dataset to include lifestyle and environmental variables, such as diet, 

physical activity, and pollution exposure, could further enhance model performance 

and offer more holistic fertility assessments. 
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