

ARTIFICIAL INTELLIGENCE IN LOGISTICS

J. Praveena

II BSc, Department of Computer Science,
Quaid E Millath Government College for Women (Autonomous), Chennai
hemalathapraveena75@gmail.com

S. Jeyashivani

II BSc, Department of Computer Science
Quaid E Millath Government College for Women (Autonomous), Chennai,
jeyashivani25@gmail.com

<https://doi.org/10.34293/9789361639715.shanlax.ch.033>

Abstract

This research paper aims to provide an overview of artificial intelligence in logistics by discussing key thematic areas in logistics like storage, transportation and eventual distribution. Artificial intelligence is increasingly being used in logistics and supply chain management. With the growing availability of data and stronger computing power, there are new opportunities to make better decision in supply chains. AI can also help automate routine tasks and workflows. However, AI will not completely replace logistics planners. Instead, it supports and enhances human work.

Keywords: Artificial intelligence, logistics, inventory management, route optimization and autonomous delivery system.

Introduction

Artificial Intelligence (AI) is a concept used to refer to the capability of a machine to do something that would otherwise demand human intelligence. Even though the idea has been there since the 1950s, AI has been recently embraced by mainstream, and currently it is driving common tools, including smartphones, digital assistants, and streaming platforms. AI is one of the strategic forces in business. Polls indicate that most executives in sectors such as healthcare and manufacturing are embracing the AI abilities, with many already implementing AI in their practices. This shows that AI is not a temporary change of technology but a sustainable driver of competitive advantage.

AI is making transformational changes in logistics and supply chain management. Resorting to time-honoured instruments like demand forecasting, warehouse management, and transportation planning is transforming into a unified and cloud-based infrastructure. Industry 4.0 brings about real time data capture of vehicles, machines, and sensors, forming a digital control tower towards end-to-end visibility of the supply chain. This is further improved by AI algorithms, which allow predictive analytics, digital twins and proactive decision-making. Importantly, AI does not substitute the judgment of human beings but supplements it, assists managers to decrease the number of errors, enhance efficiency of the supply chain, and create more resilient supply chains. Altogether, AI is becoming an irreplaceable device in the future of logistics and distribution.

Review of Literature

The paper is a comprehensive overview of artificial intelligence (AI) in the logistics sector with a focus on the dynamic route planning, autonomous delivery systems, drones, and self-driving trucks. AI allows the optimization of the route dynamically, in relation to the analysis of real-time information, including traffic and weather, which reduces the fuel consumption and delivery time and increases reliability. FedEx and UPS logistics leaders manage to use machine learning systems to achieve substantial efficiency. Self-driving trucks and drones in the delivery business are also powered by AI to navigate, make decisions and drive safely to operate at any time of the day and night and facilitate reach to areas that are inaccessible. Drones that are based on artificial intelligence make last-mile delivery faster, cheaper, and reach places that are geographically hard to reach, whereas self-driving trucks alleviate the problem of labor shortages, lower labor expenses, and enhance safety. The review is not shy in discussing the main challenges such as regulation issues, social acceptance and technical constraints. Going forward, the paper notes the promise of AI combined with IoT, 5G, and block chain, in ensuring real-time visibility, sustainability, and smarter supply chains to bring about a more agile logistics future (Yetunde Adeoye, 2025).


Methodology

Neural networks form one of the pillars of artificial intelligence; it can be easily incorporated in OLAP (Online Analytical Processing) systems to enhance the analytical power of large and complex data sets. Neural networks add functionality to OLAP by providing classification, which is the ability to arrange data into categories- clustering, which is the ability to find hidden patterns and natural groupings, and forecasting, which is the ability to predict future values, and the ability to intelligently fill gaps in multidimensional data cubes.

This consolidation is especially useful during the large data movement when neural networks are more effective at identifying the hidden patterns, as well as in providing accurate predictions. With neural networks integrated into the OLAP, organizations are not only able to accelerate the analysis and exploration of multidimensional data, but also gain automated insights, which are more profound, that dynamically change with the availability of new information.

Inventory Management

Inventory management in the logistics sector is one area where AI is transforming manual processes to automated processes. Companies can predict demand better, manage inventory efficiently, and automate their important inventory operations, including ordering and replenishing, using technologies such as deep reinforcement learning (DRL), model-based learning, and multi-agent systems as depicted in figure 1 to adapt to changes in real-time and supply chain situations that are complicated. Intelligent agents are also being deployed as large language models that make explainable, adaptive inventory decisions with little training data.

Fig.1 Inventories and flow of material (source:Arnold et al .,2007)

AI tools process different types of inventory, such as raw materials, finished goods, work-in-progress items and perishables, with the help of predictive analytics and real-time data. This results in better vendor coordination, smarter safety stock calculation, and more efficient warehouse operations. Already companies such as Amazon, Unilever and Americold have implemented AI as a way to improve the efficiency of logistics processes, and this impact can be measured by more accurate forecasts (already by 3050 percent) and more sales (up to 12 percent). Another field of application of AI is cold chain logistics and just-in-time (JIT), in which the tool is used to ensure freshness, minimize waste, and facilitate lean inventory strategies.

Fig.2 Amazon AI Inventory Management (AI, 2019)

Nevertheless, there are difficulties in the implementation of the AI in inventory management. The major obstacles include high start-up costs, inability to integrate the data

with the old systems, the unavailability of transparency of certain AI models, and the necessity of hiring expert specialists. The full potential of AI is also influenced by ethical issues and insufficient data sharing among the partners of the supply chain. These difficulties notwithstanding, AI is an effective driver of efficient, agile, and resilient inventory systems- making it a critical component of current logistics and supply chain management.

As AI systems evolve, the importance of its technology to self-learn and adjust is changing the way inventory management is handled into a proactive, intelligent process. Continuous improvements through feedback loops can be built into AI algorithms to adapt to evolving customer behavior, seasonal trends, or disruptions in the supply chains. The gains are huge: better accuracy of forecasts, lower holding costs, more optimal stocks, and better supply chain visibility. Nonetheless, several significant disadvantages, including high cost of implementing AI systems, quality of the information used, the possibility of unemployment in manual positions, and complexity of adapting AI to old systems are also present. Nevertheless, AI can still be a strategic resource in the logistics organizations that want to develop resilience, enhance efficiency, and remain competitive in an uncertain market.

Online Analytical Processing (OLAP)

In the realm of business intelligence, data serves as the foundation for informed decisionmaking. Raw data, however, are not that insightful on their own. Online Analytical Processing (OLAP) fills this gap by providing a quick multidimensional analysis of company data, especially in the ERP systems. The process of converting complex datasets into easy to handle and understand formats is systematic and includes mainly the data collection of various sources, centralization in a data warehouse, and making it available to the OLAP cubes. The OLAP server that is placed between the user and the database supports the process of advanced querying and analysis by deciphering database structures and executing specialized analytical functions.

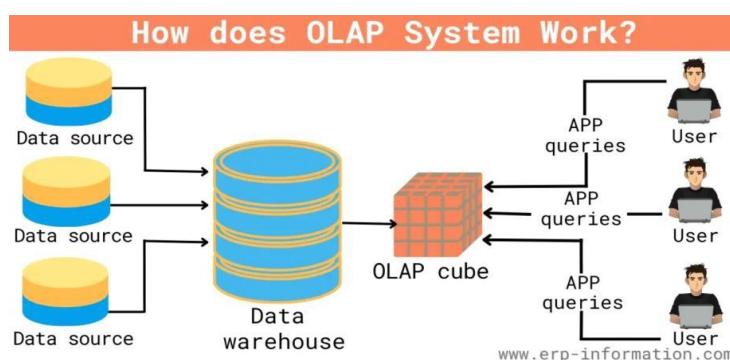


Fig. 3 How does OLAP works (source: [erp-information.com](http://www.erp-information.com))

Data Collection: Data can be gathered in different forms e.g. databases, spreadsheets or other data repositories.

Data integration: Integration of the collected data is then done and stored in a data warehouse.

OLAP cube creation: The information of the data warehouse is structured into an OLAP cube.

OLAP server: The most important segment of online analytical processing is the OLAP server that is placed between a user and a database management system (DBMS), which is aware of the organization of data in the database and has particular capabilities to analyze the data.

Manipulation of data: The user is able to do advanced calculations, trend analysis and data modeling. They are able to slice and dice the cube that is, they are able to look at data along different dimensions, be able to drill down to look at the detailed data or be able to roll up to look at the summarized data.

Data reporting and analysis: The processed data can then be analyzed by the user and reports created. Depending on the presentation, the results may be in form of table, chart or graph.

OLAP Using Artificial Intelligence

Business intelligence is being transformed by the integration of Artificial Intelligence with the Online Analytical Processing (OLAP) concept, turning multidimensional data exploration into intelligent, predictive, and prescriptive analytics. Whereas conventional OLAP allows organisations to look back, AI-enhanced OLAP allows organisations to predict trends, improve strategies and democratize insights at all organisational levels.

Cognitive pattern recognition and anomaly detection: AI can track the current tendency, fraud and outliers, as well as identify pattern, anomalies and issue real-time notifications.

Natural language query(NLQ): This is to enable the user to communicate with OLAP in the natural language.

Predictive and perspective analytics: Predict the demand, sales and inventory with integrations of machine language models.

Autonomous Data Engineering: Smart Data Preparation to automate ETL, to have cleaner more reliable OLAP cubes.

Adaptive dashboard and recommendation: Customized Dashboards and Recommendations built to roles, queries, and user actions.

Explainable AI Frameworks: Explainable AI that renders analytical findings readable by the business users.

Automated Multidimensional Feature: AI-Driven Drill-Downs with the most meaningful navigation routes.

Intelligent Drill-path Optimization: Real-time optimization based on reinforcement learning in order to aid agile decision-making.

Virtual Assistant: Virtual assistants that are conversational BI Agents.

Algorithms like Neural Network, Decision trees and clustering can be used to accomplish this.

Challenges of OLAP Using AI

Advanced data evolve dynamically: Due to the constant renewal of the business environment and ERP data, AI models regularly need retraining, which can be a labor-intensive task. Implementation cost: The implementation of AI into systems of OLAP is connected with expenses on the development of modern infrastructure, the human resources, and the maintenance of the models.

Issues of prejudice and fairness: AI models can be biased by the past data and result in biased viewpoint or conclusions.

Security & Privacy Issues: Sensitive enterprise data employed to aid AI-assisted OLAP must be well governed, access controlled and be compliant with regulations.

Querks and Real Time Processing Limitations: Latency and infrastructure may make it hard to implement continuous learning and real time OLAP analysis.

AI in Route Optimization

Route optimization is the process of searching the most effective road to deliver goods. It will save time, use less fuel, cut down on the cost of operations and make deliveries faster. Old-fashioned approaches to route optimization involve manual route planning, or basic computer aids. However, the weakness of conventional approaches was real life constraints like traffic congestions, accident, weather, or roadblocks which interfere with fixed planning. AI Enhances Route Planning by implementing flexibility and real time decisions. In contrast to the fixed maps, AI makes use of real-time information to re-route in real-time. It relies on such sources of data as Traffic sensors and GPS (congestion monitoring), Weather reports (to prevent tragedy in the case of inappropriate weather conditions), Accident data(suggest alternative paths). As an example: In the case of a highway being blocked, AI will instantly offer an alternative faster route. Use of Machine learning allows the system to change and develop with time. In order to get some insight based on previous data, Road congestion patterns, Weather effects on delivery times, Average travel times for specific routes. This results in foreseeable route planning other than responsive choices. The more the data, the more accurate it becomes. The Route Optimization AI benefits include some of them.

Saving fuel (fewer idling and detours) Reduces cost(fewer vehicle wear-and-tear, fewer hours on the road),Faster delivery(more satisfied customers),Green(less carbon emissions).
UPS (ORION System):

There is an AI tool called ORION which is employed by more than 55,000 drivers and it examines traffic, weather, and the driver history in order to select quicker cheap routes. UPS has saved millions in fuel and reduced emissions.FedEx (AI and Robots): Rides on the FedEx Same Day Bot, which runs on AI.

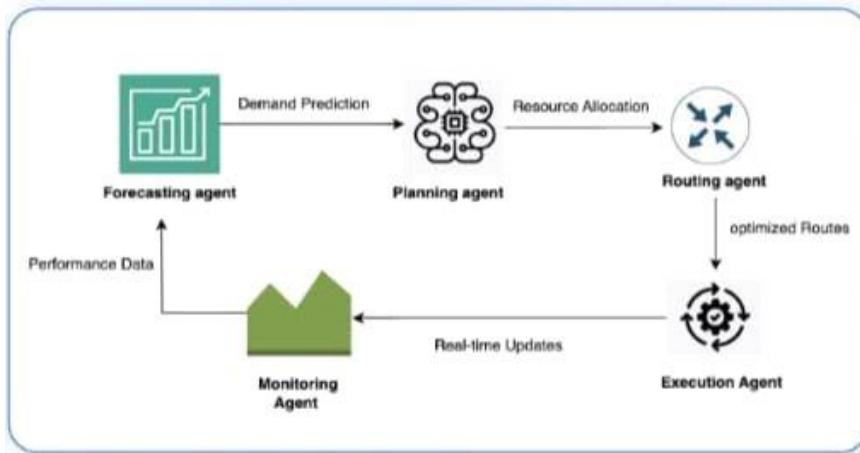


Fig 4. flow chart of Route optimization (source: akira)

Advantages of AI Route Optimization

Better efficiency: AI discovers the shortest and quickest paths, reducing the time of delivery and fuel consumption.

Cost Savings: Routes optimization saves companies on fuel, vehicle maintenance, and labour costs.

Real-Time Adaptability: AI real-time routes change through immediate information such as traffic, weather, and accidents, thereby preventing delays.

Improved Customer Service: Customers are increased due to a faster and more reliable delivery service.

Anticipatory Capabilities: Predictive machine learning forecasts traffic conditions as well as road conditions using past information to avoid typical delays.

Environmental Advantages: Emission of carbon will be reduced due to consumption of fuel, which is part of sustainability objectives.

Improved Fleet Utilization: More efficient route planning will make sure that the vehicles will be utilized in the most efficient way.

Scalability: AI systems are able to support complex logistics networks, and can scale effectively as the business expands.

Disadvantages of AI Route Optimization

Expensive to set up: AI route planning needs costly software, hardware and experienced employees and that might not be affordable to smaller delivery firms.

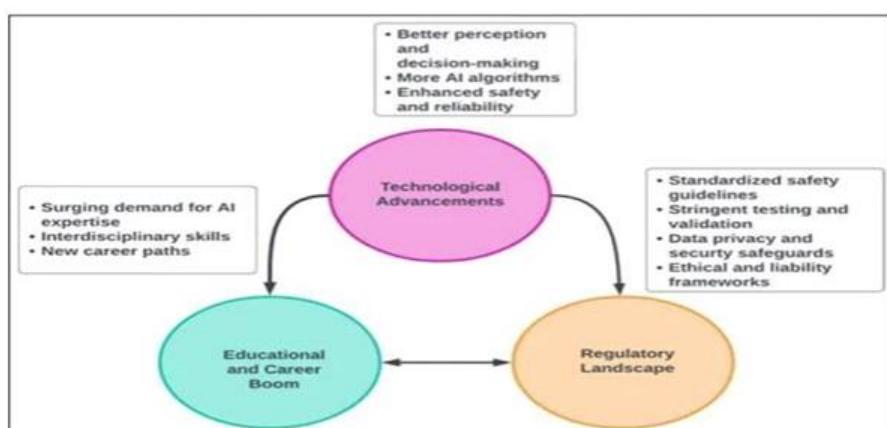
Difficult and cumbersome: These systems are not easy to install and to integrate with antiquated company software. In the absence of sophisticated IT departments, organizations can find the use and maintenance difficult.

Reliance on Good Data: AI relies a lot on well-up-to-date data (addresses, traffic, weather, package details). Incompleteness or inaccuracy of the data may lead to flawed recommendations of the AI (garbage in, garbage out).

Technology Failures: In case the AI system breaks down, has bugs or is attacked by hackers, the deliveries will be disrupted or slowed down. Companies can experience major problems in the event of system failures and lack of backup systems.

Security and Privacy Risks: AI systems process and store sensitive data about deliveries and customers and pose a higher risk of data leaks or cyberattack.

Black box Issue: AI occasionally provides route advice that cannot be understood or explained by humans. This may cause over dependence or unrealized mistakes on the part of the staff.


Over-reliance and Loss of Human Skills: Excessive dependence on AI would lead to employees losing valuable problem-solving and route-planning abilities, and it will be more difficult to process problems without the aid of AI.

Difficult to Change quickly: AI can be problematic when there are sudden occurrences such as protests, floods, and emergency road closures, unless they are represented in its training data.

Autonomous Delivery Systems

Self-driving vehicles such as drones or trucks are also used as autonomous delivery systems, eliminating the necessity of a human driver. This is a technology in a larger trend of automation that is to deliver more quickly, at a low cost, and efficiently. Drones are classified as Types of Autonomous Vehicles: Small flying cars are the most efficient in the delivery of light packages over relatively short distances, particularly in areas that are difficult to reach in the city or the countryside. Self-driving Trucks: Heavy trucks that are used to carry freight across long distances and have less human control. AI plays a vital role in the work of autonomous cars to make them safe and efficient. It employs sensors, cameras, and lidar to know about the environment, including roads, traffic, obstructions, and pedestrians. Machine learning is then used by AI to Navigate routes intelligently, Avoid obstacles, Make real-time decisions based on traffic, weather, and road conditions, Find the best places to unload or park, Monitor vehicle health and manage emergencies.

Let us see the benefits of Autonomous Delivery Systems as the figure 4 illustrates

Fig 4: advantages of AI in Autonomous vehicles (source: Garikapati and shetiya, 2024)

Benefits

Speed: The vehicle can work 24 hours without interruptions accelerating the deliveries. Last-mile deliveries are possible through drones and they are very fast.

Precision: AI guarantees that the packages are delivered in the correct place minimizing human mistakes.

Cost Savings: lowers labor costs, as well as costs of keeping large vehicle bases and depots.

Environmental Impact: Optimal routes reduce the consumption of fuel and carbon.

Access: May access remote or congested locations that are hard or costly to reach via more traditional means.

Challenges and Barriers

Safety: To make sure vehicles will not hurt pedestrians, other vehicles, or infrastructure, it is necessary to test and assure failure-safe AI.

Complex Environments: It is difficult to deal with bad weather, sudden hurdles and unforeseen human behavior.

Regulation: Multiple governments continue to develop regulations to safely deploy autonomous vehicles on the roads and in the air.

Social Rejection: There is a possibility that people and businesses will not trust drone in the sky or a truck that will automatically drive themselves through main highways.

AI in Logistics and Transportation

Integration with the New Technologies: AI in logistics relies on its integration with blockchain, IoT, and 5G connection. A combination of these technologies forms significant synergies that make them efficient, sustainable, and transparent.

AI plus IoT: IoT sensors in cars, warehouses, and cargo deliver real-time information in terms of location, temperature, humidity, and state. AI interprets that information to make smarter decisions.

Example: AI-based route optimization involves IoT data and live traffic and weather updates to enhance the speed of delivery and consumptions.

AI + 5G: Enables high bandwidth and low latency data transfer in faster and more reliable forms. Critical for real-time decisions in time-sensitive logistics like perishable goods and e-commerce.

AI + Blockchain: Accurate record-keeping that is transparent and decentralized. Provides the ability to trace goods in supply chains and ensure processes are not defrauded and meet compliance in other sectors such as pharmaceuticals and food.

Self-Driving Trucks and Drones

When could self-driving trucks and drones be put into practice in future in the case that laws of government allow them.

AI to Sustainable Logistics: Sustainability forms a significant future for AI in logistics. Carbon Emissions Minimization, Fleet Optimization, Electric Vehicles (EVs), Green Logistics Vision.

Conclusion

We are no longer fantasizing about the future of logistics we are experiencing it. Since intelligent inventory control forecasts demand to algorithmic waste minimization and optimal output maximisation, Using supervised and unsupervised machine learning algorithms, artificial intelligence is transforming every step of the supply chain. Manual motion is being phased out by intelligent movement in logistics due to the coming reality of autonomous delivery technology such as drones and driverless cars. Supervised learning with labelled data on a computer model lets the model learn through examples and creates specific classification or forecasts on new and unseen data. Every input is matched with the right output. Unsupervised learning is a technique whereby one applies unlabelled data and does not have pre-determined outcomes. The system identifies the hidden links, structures or clusters in the data on its own. The future of AI in logistics is intelligent, and not necessarily automation.

AI has become the brainpower of making decisions faster, operationally sustainable and strong systems. It does not only accommodate logistics it propels it. With the coming together of technology and intelligence, we are entering a time when goods are not merely moving, they move with precision, purpose and power.

References

1. Abduljabbar, R., Dia, H., Liyanage, S. and Bagloee, S.A., (2019), Applications of artificial intelligence in transport: An Overview. *Sustainability*, 11(1), pp.189.
2. Abosuliman, S.S. and Almagrabi, A.O.,(2021), Routing and scheduling of intelligent autonomous vehicles in Industrial logistics systems. *Soft Computing*, 25, pp.1197511988
3. Dewi, S.K. and Utama, D.M., (2021), A new hybrid whale optimization algorithm for green vehicle routing problem. *Systems Science & Control Engineering*, 9(1), pp.6172.
4. Shaklab, E., Karapetyan, A., Sharma, A., Mebrahtu, M., Basri, M., Nagy, M., Khonji, M. and Dias, J.,(2023), Towards Autonomous and Safe Last-mile Deliveries with AI-augmented Self-driving Delivery Robots.
5. Online Analytical Processing (OLAP)-www.erp-information.com
6. Sai Teja Boppiniti(2021), Real-Time Data Analytics with AI: Leveraging Stream Processing for Dynamic Decision Support
7. Shaygan, M., Meese, C., Li, W., Zhao, X.G. and Nejad, M., 2022. Traffic prediction using artificial intelligence: Review Of recent advances and emerging opportunities. *Transportation research part C: emerging technologies*, 145, P.103921.
8. Vaghani, A., Sood, K. and Yu, S., 2022. Security and QoS issues in blockchain enabled next-generation smart logistic Networks: A tutorial. *Blockchain: Research and Applications*, 3(3), p.10008

9. Javaid, M., Haleem, A., Singh, R.P. and Suman, R., 2022. Artificial intelligence applications for industry 4.0: A Literature-based study. *Journal of Industrial Integration and Management*, 7(01), pp.83-111.
10. Foster, M.N. and Rhoden, S.L., 2020. The integration of automation and artificial intelligence into the logistics Sector: A Caribbean perspective. *Worldwide Hospitality and Tourism Themes*, 12(1), pp.56-68.
11. Bathla, G., Bhadane, K., Singh, R.K., Kumar, R., Aluvalu, R., Krishnamurthi, R., Kumar, A., Thakur, R.N. and Basheer,
12. S., 2022. Autonomous vehicles and intelligent automation: Applications, challenges, and opportunities. *Mobile Information Systems*, 2022(1), p.7632892
13. De Moor BJ, Gijsbrechts J, Boute RN (2021) Reward shaping to improve the performance of deep reinforcement learning in inventory management, Available at SSRN: <http://dx.doi.org/10.2139/ssrn.3804655>
14. M. Gulesian. Using Neural Networks and OLAP Tools to Make Business Decisions, 2008.
15. M. Artikova, Sh. Rasulova, Data classification using neural networks, in: Scientific Collection «InterConf»: Scientific Goals and Purposes in XXI Century, 2021, (78), pp. 403-409. [in Russian].